# Quantum Computing, an Introduction

Simon Perdrix

Inria, Mocqua/Loria

**QComical** 

3 Nov 2025



https://qcomical2025.github.io/













## **QCOMICAL School 2025**



on Quantum and Classical Programming Languages and Semantics
NOVEMBER 3 TO 7, 2025 - NANCY, FRANCE

| Time          | Monday                                 | Tuesday                          | Wednesday                        | Thursday                         | Friday                |
|---------------|----------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------|
| 9:30 – 11:30  |                                        | Quantum Programming<br>Languages | Concurrency                      | Quantum Linear Optics            | Quantitative Types    |
| 11:30 – 12:00 |                                        | Coffee break                     |                                  |                                  |                       |
| 12:00 – 13:00 |                                        | Realisability                    | Quantum Programming<br>Languages | Quantitative Types               | Industrial Session    |
| 13:00 – 13:30 |                                        |                                  |                                  |                                  |                       |
| 13:30 – 14:30 | Lunch break  Tutorial: Introduction to |                                  |                                  |                                  |                       |
| 14:30 – 15:30 | Quantum Computing                      | Realisability                    | Quantum Programming<br>Languages | Quantitative Types               |                       |
| 15:30 – 16:00 | Coffee break                           |                                  |                                  |                                  | Quantum Linear Optics |
| 16:00 – 16:30 |                                        |                                  |                                  |                                  |                       |
| 16:30 – 18:00 | Tutorial: Introduction to ZX Calculus  | Concurrency                      | Realisability                    | Quantum Programming<br>Languages | CNTS C D              |



Diamond and Gold sponsors



MUUNITNAUO





Gilles Dowek (1966-2025)

# Quantum Computing, an Introduction

Simon Perdrix

Inria, Mocqua/Loria

**QComical** 

3 Nov 2025



https://qcomical2025.github.io/











# Why a "quantum" processing of information?

Some problems can be solved much more efficiently using quantum computers

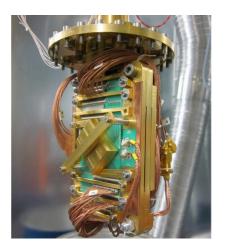
- Search [Grover'96]
- Solving Linear Systems [HHL'09]
- Factorisation [Shor'94]

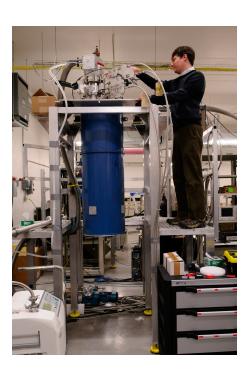
# Why a "quantum" processing of information?

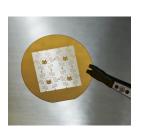
Some problems can be solved much more efficiently using quantum computers

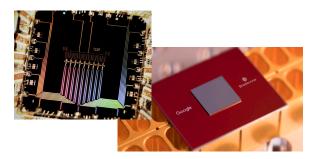
- Search [Grover'96]
- Solving Linear Systems [HHL'09]
- Factorisation [Shor'94]



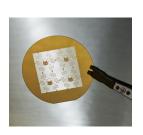


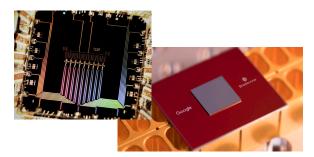




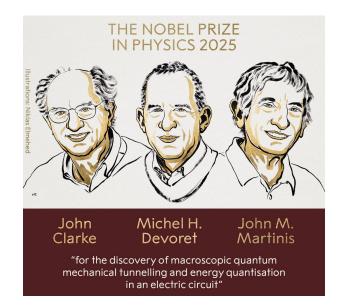


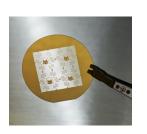


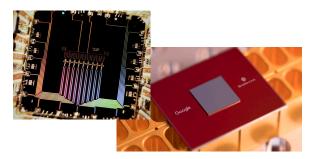




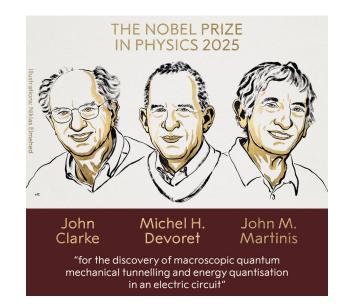


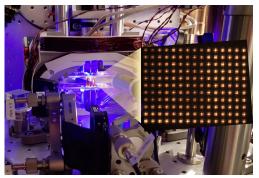


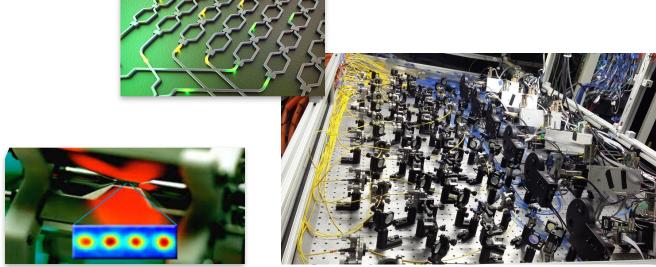


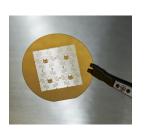


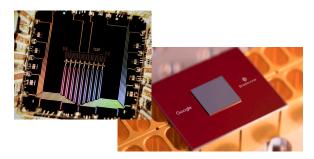




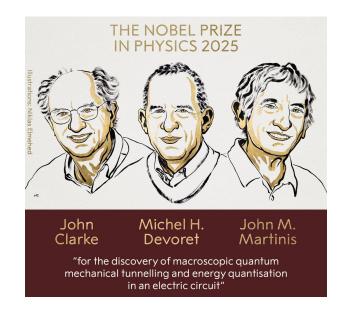


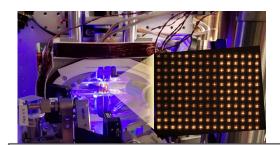






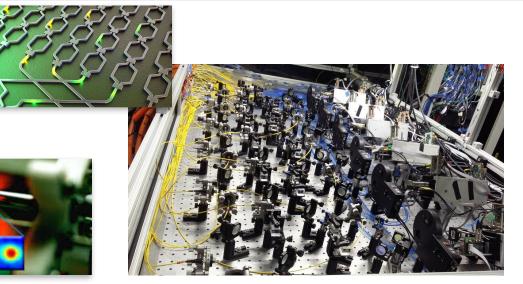


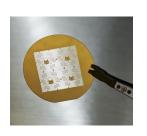


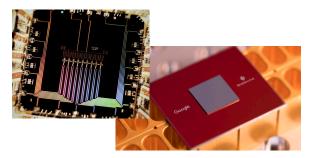


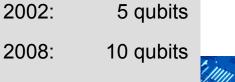
#### Main technological challenges:

- size of the memory (#qubits)
- quality of the qubits.









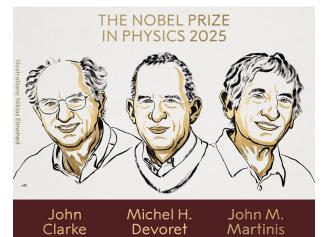
2015: 16 qubits

2018: 49 qubits

2020: 72 qubits

2025: ~1000 qubits

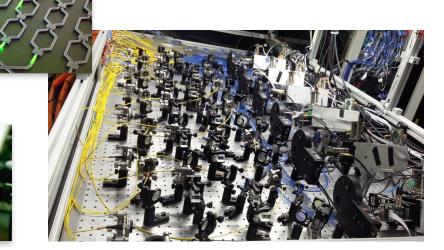




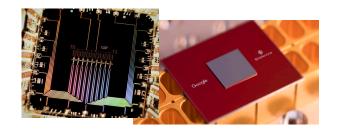
"for the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit"

#### Main technological challenges:

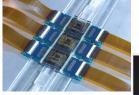
- size of the memory (#qubits)
- quality of the qubits.



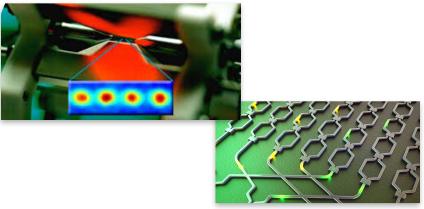
# Noisy Intermediate-Scale Quantum (NISQ) devices





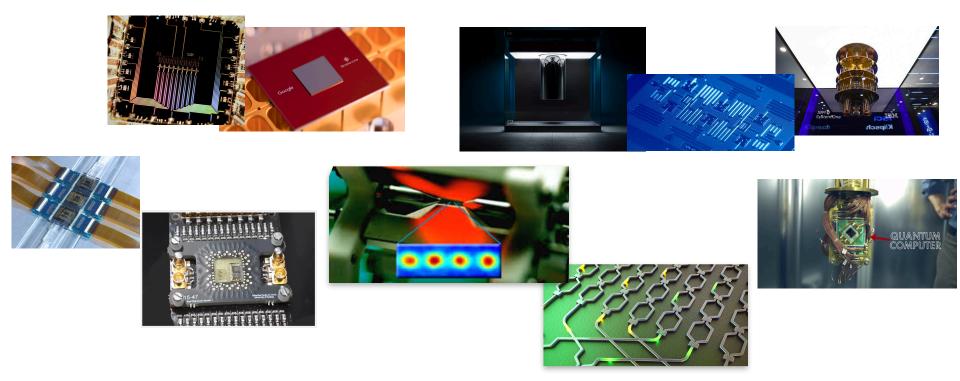








# Noisy Intermediate-Scale Quantum (NISQ) devices



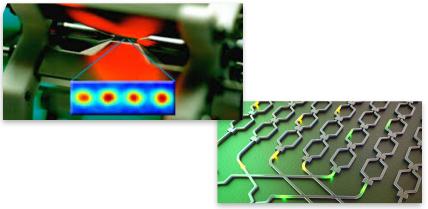
- Try to prove a theoretical separation classical / quantum computing
- Develop heuristics to try to outperform classical computers in practice

## Noisy Intermediate-Scale Quantum (NISQ) devices











#### evidence of a

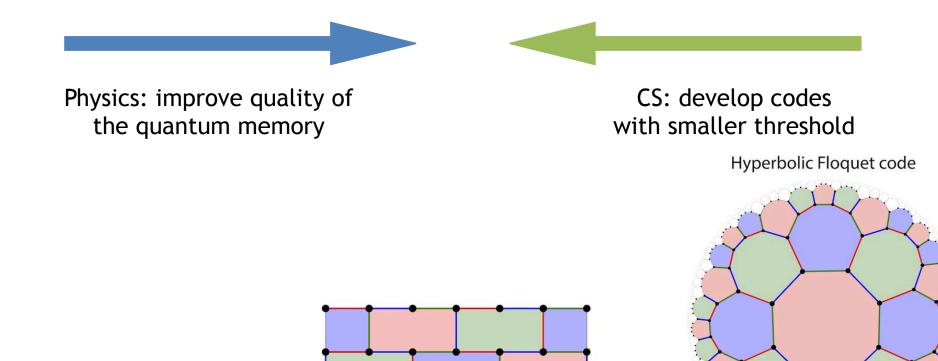
- Try to prove a theoretical separation classical / quantum computing
- Develop heuristics to try to outperform classical computers in practice

## Towards Fault-Tolerant QC

• Quantum error correcting codes

Toric honeycomb code

• Threshold Theorem: correcting errors faster than they are created.



# Factorisation of 2048-bit RSA integers

#### RSA-250 [edit]

RSA-250 has 250 decimal digits (829 bits), and was factored in February 2020 by Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé, and Paul Zimmermann. The announcement of the factorization occurred on February 28, 2020.

× 3337202759497815655622601060535511422794076034476755466678452098702384172921 0037080257448673296881877565718986258036932062711

The factorisation of RSA-250 utilised approximately 2700 CPU core-years, using a 2.1 GHz Intel Xeon Gold 6130 CPU as a reference. The computation was performed with the Number Field Sieve algorithm, using the open source CADO-NFS software.

(wikipedia, RSA factorisation challenges)

# Factorisation of 2048-bit RSA integers

RSA-250 [edit]

RSA-250 has 250 decimal digits (829 bits), and was factored in February 2020 by Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé, and Paul Zimmermann. The announcement of the factorization occurred on February 28, 2020.

[Submitted on 23 May 2019 (v1), last revised 13 Apr 2021 (this version, v3)]

#### How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney, Martin Ekerå

We significantly reduce the cost of factoring integers and computing discrete logarithms in finite fields on a quantum computer by combining techniques from Shor 1994, Griffiths-Niu 1996, Zalka 2006, Fowler 2012, Ekerå-Håstad 2017, Ekerå 2017, Ekerå 2018, Gidney-Fowler 2019, Gidney 2019. We estimate the approximate cost of our construction using plausible physical assumptions for large-scale superconducting qubit platforms: a planar grid of qubits with nearest-neighbor connectivity, a characteristic physical gate error rate of  $10^{-3}$ , a surface code cycle time of 1 microsecond, and a reaction time of 10 microseconds. We account for factors

(wikipedia, RSA factorisation challenges)

# Factorisation of 2048-bit RSA integers

#### RSA-250 [edit]

RSA-250 has 250 decimal digits (829 bits), and was factored in February 2020 by Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé, and Paul Zimmermann. The announcement of the factorization occurred on February 28, 2020.

[Submitted on 23 May 2019 (v1), last revised 13 Apr 2021 (this version, v3)]

#### How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney, Martin Ekerå

We significantly reduce the cost of factoring integers and computing discrete logarithms in finite fields on a quantum computer by combining techniques from Shor 1994, Griffiths-Niu 1996, Zalka 2006, Fowler 2012, Ekerå-Håstad 2017, Ekerå 2017, Ekerå 2018, Gidney-Fowler 2019, Gidney 2019. We estimate the approximate cost of our construction using plausible physical assumptions for large-scale superconducting qubit platforms: a planar grid of qubits with nearest-neighbor connectivity, a characteristic physical gate error rate of  $10^{-3}$ , a surface code cycle time of 1 microsecond, and a reaction time of 10 microseconds. We account for factors

[Submitted on 21 May 2025]

#### How to factor 2048 bit RSA integers with less than a million noisy qubits

#### Craig Gidney

Planning the transition to quantum-safe cryptosystems requires understanding the cost of quantum attacks on vulnerable cryptosystems. In Gidney+Ekerå 2019, I co-published an estimate stating that 2048 bit RSA integers could be factored in eight hours by a quantum computer with 20 million noisy qubits. In this paper, I substantially reduce the number of qubits required. I estimate that a 2048 bit RSA integer could be factored in less than a week by a quantum computer with less than a million noisy qubits. I make the same assumptions as in 2019: a square grid of qubits with nearest neighbor connections, a uniform gate error rate of 0.1%, a surface code cycle time of 1 microsecond, and a control system reaction time of 10 microseconds. The qubit count reduction comes mainly from using approximate residue arithmetic (Chevignard+Fouque+Schrottenloher 2024), from storing idle logical qubits with yoked surface codes (Gidney+Newman+Brooks+Jones 2023), and from allocating



Quantum Technologies



Quantum Software



Quantum Technologies



Applications / Quantum Algorithms

Quantum Software



Quantum Technologies



Applications /

Quantum Algorithms

Quantum Software Environment / Languages



Quantum Technologies



Quantum Software

Applications / Quantum Algorithms

Environment / Languages

Models of Computation



Quantum Technologies



Applications / Quantum Algorithms

Quantum Software Environment / Languages

Models of Computation

Error correcting codes

## Outline

Challenges in Quantum computing

Postulates i.e. standard quantum computational model.

1st Quantum Algorithm

Reasoning on Quantum Circuits

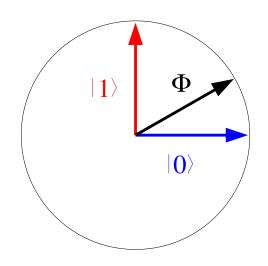
Grover

## Quantum states

- Classical bit:  $b \in \{0, 1\}$
- ullet Quantum bit (**qubit**):  $oldsymbol{\Phi} \in \mathbb{C}^2$ ,

$$\mathbf{\Phi} = \alpha |0\rangle + \beta |1\rangle$$

with  $|\alpha|^2 + |\beta|^2 = 1$ 



$$|0\rangle$$

$$\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

## Register of qubits

**Definition.** The state of a n-qubit register is a unit vector of  $\mathbb{C}^{2^n}$ .

$$\Phi = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \text{ with } ||\Phi||^2 = \sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1$$

$$\frac{1}{\sqrt{2}}(|00\rangle - |01\rangle)$$

$$\frac{1}{\sqrt{3}}(|00\rangle + i|01\rangle + |11\rangle)$$

$$\frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

**Definition.** Let  $\Phi_1$  be a n-qubit state and  $\Phi_2$  be a m-qubit state, the (n+m)-qubit state of the composed system is

$$\Phi = \Phi_1 \otimes \Phi_2$$

where  $\cdot \otimes \cdot$  is bilinear and  $\forall x \in \{0,1\}^n$ ,  $\forall y \in \{0,1\}^m$ ,  $|x\rangle \otimes |y\rangle = |xy\rangle$ .

$$\frac{|00\rangle+|11\rangle}{\sqrt{2}} = ? \otimes ?$$

**Definition.** Let  $\Phi_1$  be a n-qubit state and  $\Phi_2$  be a m-qubit state, the (n+m)-qubit state of the composed system is

$$\Phi = \Phi_1 \otimes \Phi_2$$

where  $\cdot \otimes \cdot$  is bilinear and  $\forall x \in \{0,1\}^n$ ,  $\forall y \in \{0,1\}^m$ ,  $|x\rangle \otimes |y\rangle = |xy\rangle$ .

$$\frac{|00\rangle+|11\rangle}{\sqrt{2}} = ? \otimes ?$$

**Definition.** Let  $\Phi_1$  be a n-qubit state and  $\Phi_2$  be a m-qubit state, the (n+m)-qubit state of the composed system is

$$\Phi = \Phi_1 \otimes \Phi_2$$

where  $\cdot \otimes \cdot$  is bilinear and  $\forall x \in \{0,1\}^n$ ,  $\forall y \in \{0,1\}^m$ ,  $|x\rangle \otimes |y\rangle = |xy\rangle$ .

3 
$$\frac{\frac{|00\rangle+|11\rangle}{\sqrt{2}} = (a|0\rangle+b|1\rangle) \otimes (c|0\rangle+d|1\rangle)$$
$$= ac|00\rangle+ad|01\rangle+bc|10\rangle+bd|11\rangle$$

**Definition.** Let  $\Phi_1$  be a n-qubit state and  $\Phi_2$  be a m-qubit state, the (n+m)-qubit state of the composed system is

$$\Phi = \Phi_1 \otimes \Phi_2$$

where  $\cdot \otimes \cdot$  is bilinear and  $\forall x \in \{0,1\}^n$ ,  $\forall y \in \{0,1\}^m$ ,  $|x\rangle \otimes |y\rangle = |xy\rangle$ .

3 
$$\frac{|00\rangle + |11\rangle}{\sqrt{2}} \neq (a |0\rangle + b |1\rangle) \otimes (c |0\rangle + d |1\rangle)$$

$$= ac |00\rangle + ad |01\rangle + bc |10\rangle + bd |11\rangle$$

$$\implies ad = 0 \implies ac = 0 \text{ or } bd = 0 \text{ impossible}$$

**Definition.** Let  $\Phi_1$  be a n-qubit state and  $\Phi_2$  be a m-qubit state, the (n+m)-qubit state of the composed system is

$$\Phi = \Phi_1 \otimes \Phi_2$$

where  $\cdot \otimes \cdot$  is bilinear and  $\forall x \in \{0,1\}^n$ ,  $\forall y \in \{0,1\}^m$ ,  $|x\rangle \otimes |y\rangle = |xy\rangle$ .

3 
$$\frac{|00\rangle + |11\rangle}{\sqrt{2}} \neq (a |0\rangle + b |1\rangle) \otimes (c |0\rangle + d |1\rangle)$$

$$= ac |00\rangle + ad |01\rangle + bc |10\rangle + bd |11\rangle$$

$$\implies ad = 0 \implies ac = 0 \text{ or } bd = 0 \text{ impossible}$$

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 is an entangled state.

**Definition.** Let  $\Phi_1$  be a n-qubit state and  $\Phi_2$  be a m-qubit state, the (n+m)-qubit state of the composed system is

$$\Phi = \Phi_1 \otimes \Phi_2$$

where  $\cdot \otimes \cdot$  is bilinear and  $\forall x \in \{0,1\}^n$ ,  $\forall y \in \{0,1\}^m$ ,  $|x\rangle \otimes |y\rangle = |xy\rangle$ .



3 
$$\frac{|00\rangle + |11\rangle}{\sqrt{2}} \neq (a |0\rangle + b |1\rangle) \otimes (c |0\rangle + d |1\rangle)$$

$$= ac |00\rangle + ad |01\rangle + bc |10\rangle + bd |11\rangle$$

$$\implies ad = 0 \implies ac = 0 \text{ or } bd = 0 \text{ impossible}$$

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \text{ is an entangled state.}$$

# Representing Entanglement

$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}$$



$$\frac{|000\rangle + |111\rangle}{\sqrt{2}}$$



# Representing Entanglement with Graph states

# Representing Entanglement with Graph states

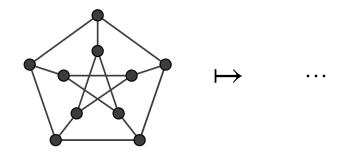
$$G \quad \mapsto \quad |G\rangle = \frac{1}{\sqrt{2}^{|V|}} \sum_{x \in 2^V} (-1)^{|G[x]|} |x\rangle$$

# Representing Entanglement with Graph states

**Def.** Graph states:

$$G \mapsto |G\rangle = \frac{1}{\sqrt{2}^{|V|}} \sum_{x \in 2^V} (-1)^{|G[x]|} |x\rangle$$

- compact representation



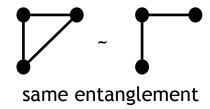
**Def.** Graph states:

$$G \mapsto |G\rangle = \frac{1}{\sqrt{2}^{|V|}} \sum_{x \in 2^V} (-1)^{|G[x]|} |x\rangle$$

- compact representation

$$G \mapsto |G\rangle = \frac{1}{\sqrt{2}^{|V|}} \sum_{x \in 2^V} (-1)^{|G[x]|} |x\rangle$$

- compact representation
- representation of entanglement is not unique



$$G \mapsto |G\rangle = \frac{1}{\sqrt{2}^{|V|}} \sum_{x \in 2^V} (-1)^{|G[x]|} |x\rangle$$

- compact representation
- representation of entanglement is not unique
- Local complementation preserves entanglement:

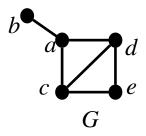


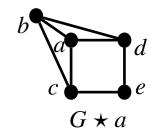
**Def.** Graph states:

$$G \mapsto |G\rangle = \frac{1}{\sqrt{2}^{|V|}} \sum_{x \in 2^V} (-1)^{|G[x]|} |x\rangle$$

- compact representation
- representation of entanglement is not unique
- Local complementation preserves entanglement:



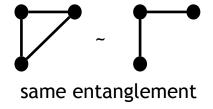


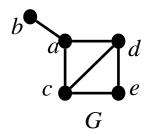


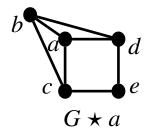
**Def.** Graph states:

$$G \mapsto |G\rangle = \frac{1}{\sqrt{2}^{|V|}} \sum_{x \in 2^V} (-1)^{|G[x]|} |x\rangle$$

- compact representation
- representation of entanglement is not unique
- Local complementation preserves entanglement:

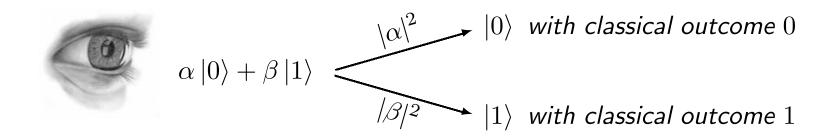






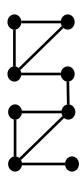
**THM**<sup>1</sup>. Two graphs represent the same entanglement iff the can be transformed into each other by means of generalised local complementation

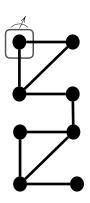
### Measurement

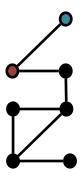


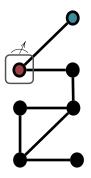
Measurement is **probabilistic** and **irreversible**.

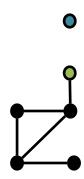
Measure  $\implies$  Interaction  $\implies$  Transformation

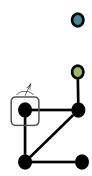


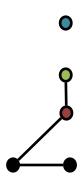


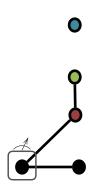










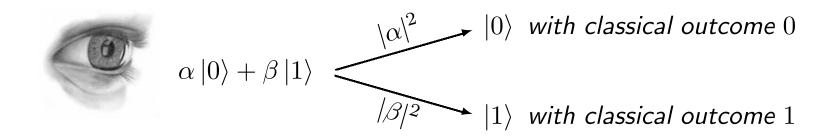








### Measurement



Measurement is **probabilistic** and **irreversible**.

Measure  $\implies$  Interaction  $\implies$  Transformation

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha \Phi + \beta \Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$H : |0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$H(H(|0\rangle)) =$$

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha \Phi + \beta \Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$H : |0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$H(H(|0\rangle)) = H\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) =$$

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha \Phi + \beta \Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$H : |0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
$$|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$H(H(|0\rangle)) = H\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{H(|0\rangle) + H(|1\rangle)}{\sqrt{2}} =$$

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha \Phi + \beta \Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$H : |0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
$$|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$H(H(|0\rangle)) = H\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{H(|0\rangle) + H(|1\rangle)}{\sqrt{2}} = \frac{|0\rangle + |1\rangle + |0\rangle - |1\rangle}{2} =$$

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha \Phi + \beta \Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$H : |0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
$$|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$H(H(|0\rangle)) = H\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{H(|0\rangle) + H(|1\rangle)}{\sqrt{2}} = \frac{|0\rangle + |1\rangle + |0\rangle - |1\rangle}{2} = |0\rangle$$

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha \Phi + \beta \Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$H : |0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
$$|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$H(H(|0\rangle)) = H\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{H(|0\rangle) + H(|1\rangle)}{\sqrt{2}} = \frac{|0\rangle + |1\rangle + |0\rangle - |1\rangle}{2} = |0\rangle$$

$$H(H(|1\rangle)) = H\left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) = \frac{H(|0\rangle) - H(|1\rangle)}{\sqrt{2}} = \frac{|0\rangle + |1\rangle - |0\rangle + |1\rangle}{2} = |1\rangle$$

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha \Phi + \beta \Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$\forall x \in \{0,1\}, \quad H|x\rangle = \frac{|0\rangle + (-1)^x |1\rangle}{\sqrt{2}}$$

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha \Phi + \beta \Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$\forall x \in \{0,1\}, \quad H|x\rangle = \frac{|0\rangle + (-1)^x |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \sum_{y \in \{0,1\}} (-1)^{xy} |y\rangle$$

#### **Definition.** An isolated system evolves

- linearly i.e.,  $U(\alpha\Phi + \beta\Psi) = \alpha U(\Phi) + \beta U(\Psi)$
- preserving the normalisation condition i.e.,  $||U(\Phi)|| = ||\Phi||$

$$\forall x \in \{0,1\}, \quad H|x\rangle = \frac{|0\rangle + (-1)^x |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \sum_{y \in \{0,1\}} (-1)^{xy} |y\rangle$$

$$H \downarrow H \downarrow \dots H \downarrow$$

$$\forall x \in \{0,1\}^n, \quad H_n | x \rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} | y \rangle$$

with 
$$x \cdot y = \sum_{i=1}^{n} x_i y_i \mod 2$$

### Outline

Challenges in Quantum computing

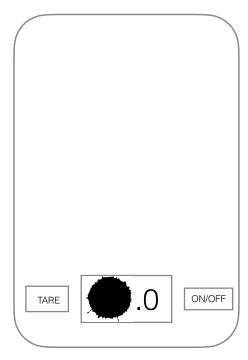
Postulates

1st Quantum Algorithm: Detecting fake coins with a quantum scale

Reasoning on Quantum Circuits

Grover

















































# Detecting fake coins



A true coin weighs 8g, a fake 7.5g.



# Detecting fake coins



A true coin weighs 8g, a fake 7.5g.





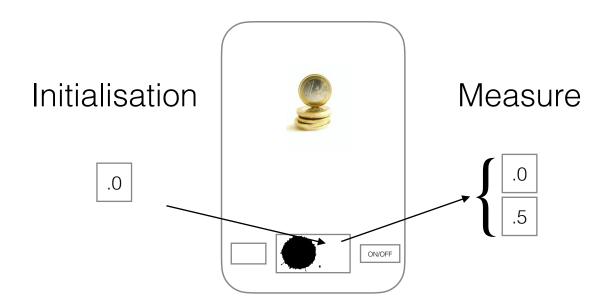
## Detecting fake coins

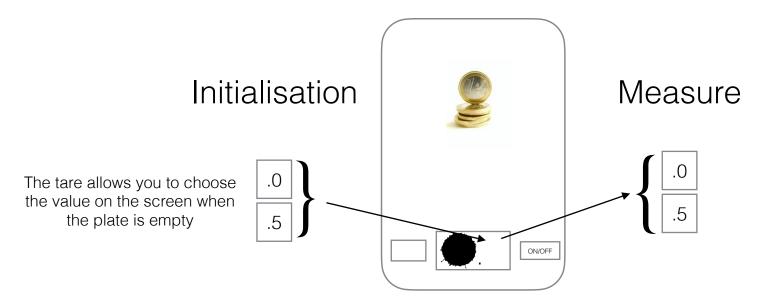


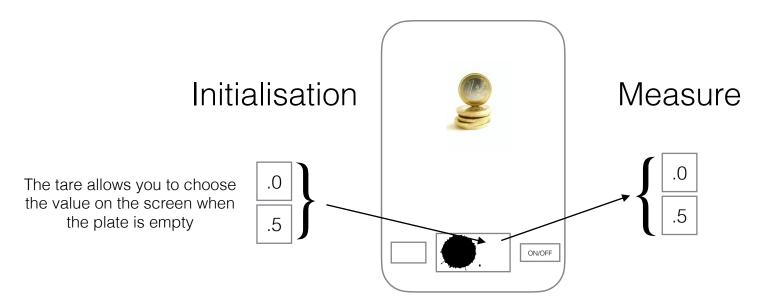
A true coin weighs 8g, a fake 7.5g.





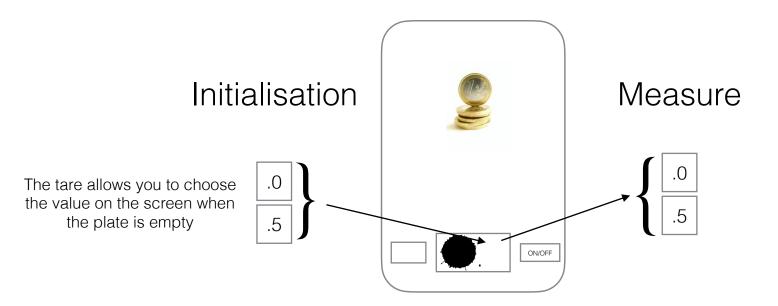






• even number of fake coins

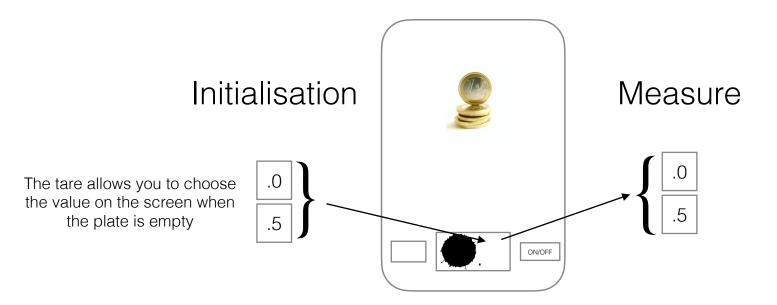
$$\begin{array}{ccc} .0 & \longrightarrow & .0 \\ \hline .5 & \longrightarrow & .5 \end{array}$$



• even number of fake coins

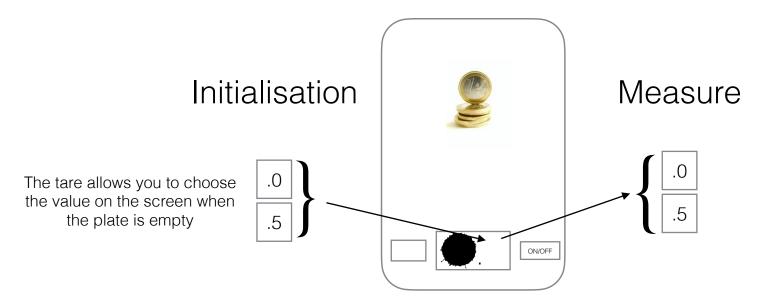
Screen does **not** change

$$\begin{array}{c|c} .0 & \longrightarrow & .0 \\ \hline .5 & \longrightarrow & .5 \end{array}$$



• even number of fake coins

Screen does **not** change



• even number of fake coins

Screen does not change

 $\begin{array}{c|c} .0 & \longrightarrow & .0 \\ \hline .5 & \longrightarrow & .5 \end{array}$ 

• **odd** number of fake coins

Screen does change

$$\begin{array}{c|c}
.0 & \longrightarrow & .5 \\
\hline
.5 & \longrightarrow & .0
\end{array}$$

## Mathematical modelling



A subset of n coins  $\longleftrightarrow$  a binary word of size n

Let  $a \in \{0,1\}^n$  be the set of **fake** coins

# Mathematical modelling



A subset of n coins

← a binary word of size n

Let  $a \in \{0,1\}^n$  be the set of **fake** coins

A weighing is described by a function  $f_a: \{0,1\}^n \to \{0,1\}$  which associates with every subset x of coins, the parity  $f_a(x)$  of fake coins in x.

$$f_a(x) = \sum_{i=1}^n x_i a_i \mod 2 = x \bullet a$$

### How to (classically) identify the fake coins among n?

- Greedy algorithm:
  - -> Weighing coins one by one: **n Weighings**
- Better algorithm?



#### How to (classically) identify the fake coins among n?

- Greedy algorithm:
  - -> Weighing coins one by one: n Weighings
- Better algorithm?



No, the greedy algorithm is optimal

### How to (classically) identify the fake coins among n?

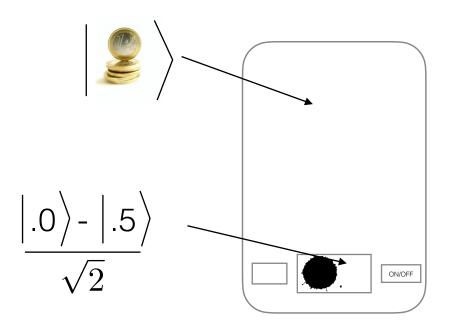
- Greedy algorithm:
  - -> Weighing coins one by one: n Weighings
- Better algorithm?



#### No, the greedy algorithm is optimal

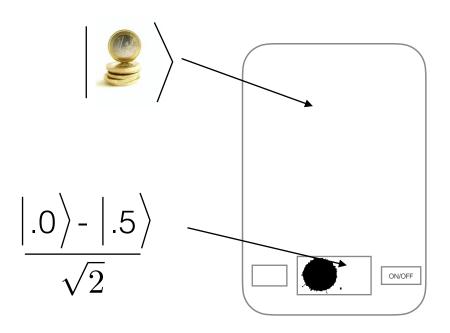
#### Intuition:

- Need (at least) n bits to describe the solution (because 2<sup>n</sup> possible answers).
- Each weighing gives a single bit of information (".0" or ".5")
- So at least n weighings are necessary



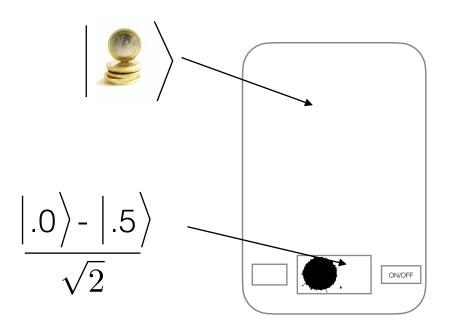
• if even number of fake coins:

$$\left| \begin{array}{c} | \begin{array}{c} | \begin{array}{c} | \begin{array}{c} | \begin{array}{c} | \begin{array}{c} | \end{array} \\ \hline \end{array} \\ \hline \end{array} \right\rangle \left( \begin{array}{c} | \begin{array}{c} | \begin{array}{c} | \end{array} \\ \hline \end{array} \right) \left| \begin{array}{c} | \begin{array}{c} | \end{array} \\ \hline \end{array} \right\rangle \left| \begin{array}{c} | \begin{array}{c} | \end{array} \\ \hline \end{array} \right\rangle \left| \begin{array}{c} | \begin{array}{c} | \end{array} \\ \hline \end{array} \right\rangle \left| \begin{array}{c} | \begin{array}{c} | \\ \hline \end{array} \right\rangle \left| \begin{array}{c} | \end{array} \right\rangle \left| \begin{array}{c} | \begin{array}{c} | \\ \hline \end{array} \right\rangle \left| \begin{array}{c} | \end{array} \right\rangle \left|$$



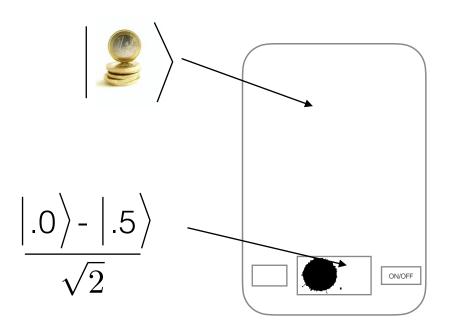
• if even number of fake coins:

$$\left| \underbrace{\$} \right\rangle \left( \left| \underbrace{.0} \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right) = \left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} \longrightarrow \left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}}$$



• if even number of fake coins:

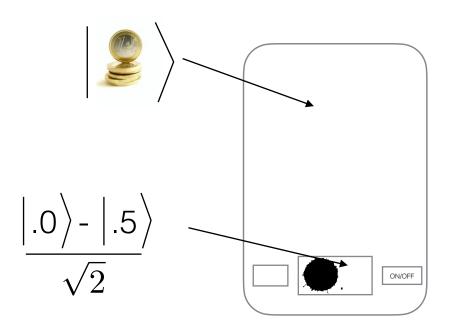
$$\left| \underbrace{\$} \right\rangle \left( \left| \underbrace{.0} \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right) = \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} \longrightarrow \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} = \underbrace{\left| \$} \right\rangle \left( \left| .0 \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right)$$



• if **even** number of fake coins:

$$\left| \underbrace{\$} \right\rangle \left( \left| \underbrace{.0} \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right) = \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} \longrightarrow \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} = \underbrace{\left| \underbrace{\$} \right\rangle \left( \left| .0 \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right)$$

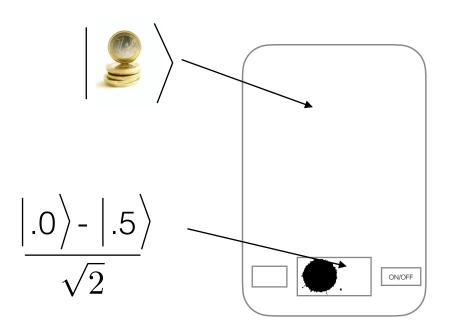
$$\left| \frac{2}{5} \right\rangle \left( \frac{|.0\rangle - |.5\rangle}{\sqrt{2}} = \frac{|\frac{2}{5} \right\rangle |.0\rangle - |\frac{2}{5} \right\rangle |.5\rangle}{\sqrt{2}} \longrightarrow$$



• if **even** number of fake coins:

$$\left| \underbrace{\$} \right\rangle \left( \left| \underbrace{.0} \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right) = \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} \longrightarrow \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} = \underbrace{\left| \$} \right\rangle \left( \left| .0 \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right)$$

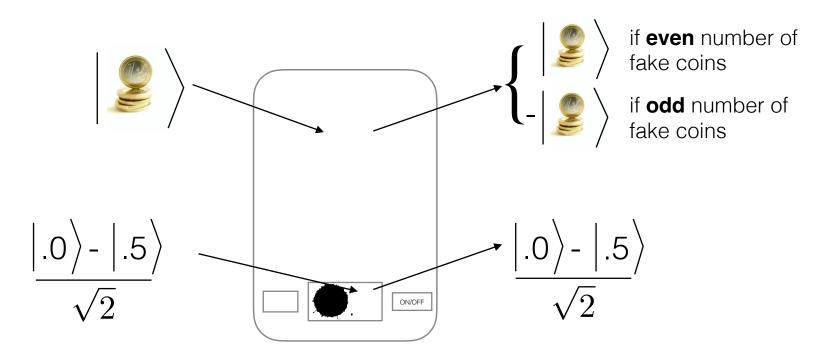
$$\left| \begin{array}{c} | \end{array} \\ \hline \end{array} \rangle \left| \begin{array}{c} | \begin{array}{c} | \begin{array}{c} | \end{array} \rangle \left| \begin{array}{c} | \end{array} \rangle \left| \begin{array}{c} | \end{array} \rangle \right| \\ \hline \end{array} \rangle \left| \begin{array}{c} | \begin{array}{c} | \begin{array}{c} | \end{array} \rangle \left| \begin{array}{c} | \begin{array}{c} | \end{array} \rangle \left| \begin{array}{c} | \end{array} \rangle \left| \begin{array}{c} | \end{array} \rangle \right| \\ \hline \end{array} \rangle \left| \begin{array}{c} | \begin{array}{c} | \begin{array}{c} | \end{array} \rangle \left| \begin{array}{c} | \begin{array}{c} | \end{array} \rangle \left| \begin{array}{c} | \end{array} \rangle \right| \\ \hline \end{array} \rangle \left| \begin{array}{c} | \begin{array}{c} | \end{array} \rangle \left| \end{array} \rangle \left| \begin{array}{c} | \end{array} \right| \left| \begin{array}{c} | \end{array} \rangle \left| \begin{array}{c} | \end{array} \right| \left| \begin{array}{c} | \end{array} \rangle \left$$



• if **even** number of fake coins:

$$\left| \frac{2}{\sqrt{2}} \right\rangle \left( \frac{|.0\rangle - |.5\rangle}{\sqrt{2}} \right) = \frac{|2\rangle |.0\rangle - |2\rangle |.5\rangle}{\sqrt{2}} \longrightarrow \frac{|2\rangle |.0\rangle - |2\rangle |.5\rangle}{\sqrt{2}} = |2\rangle \left( \frac{|.0\rangle - |.5\rangle}{\sqrt{2}} \right)$$

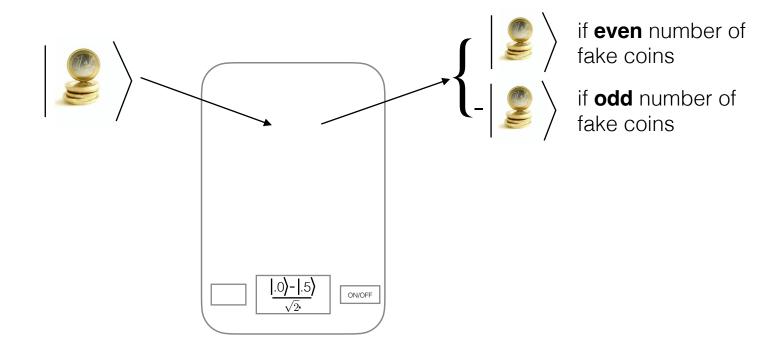
$$\left| \underbrace{\$} \right\rangle \left( \left| \underbrace{.0} \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right) = \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} \longrightarrow \underbrace{\left| \underbrace{\$} \right\rangle \left| .5 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .0 \right\rangle}_{\sqrt{2}} = - \left| \underbrace{\$} \right\rangle \left( \left| .0 \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right)$$



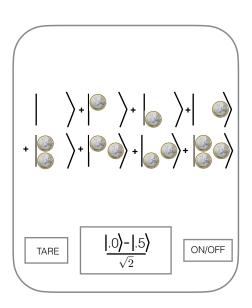
• if **even** number of fake coins:

$$\left| \underbrace{\$} \right\rangle \left( \left| \underbrace{.0} \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right) = \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} \longrightarrow \underbrace{\left| \underbrace{\$} \right\rangle \left| .0 \right\rangle - \left| \underbrace{\$} \right\rangle \left| .5 \right\rangle}_{\sqrt{2}} = \underbrace{\left| \$} \right\rangle \left( \left| .0 \right\rangle - \left| .5 \right\rangle}_{\sqrt{2}} \right)$$

$$\left| \frac{2}{\sqrt{2}} \right\rangle \left( \frac{|.0\rangle - |.5\rangle}{\sqrt{2}} \right) = \frac{|\frac{2}{\sqrt{2}} \left| .0\rangle - |\frac{2}{\sqrt{2}} \right\rangle |.5\rangle}{\sqrt{2}} \longrightarrow \frac{|\frac{2}{\sqrt{2}} \left| .5\rangle - |\frac{2}{\sqrt{2}} \right\rangle |.0\rangle}{\sqrt{2}} = -|\frac{2}{\sqrt{2}} \right\rangle \left( \frac{|.0\rangle - |.5\rangle}{\sqrt{2}} \right)$$



$$|x\rangle \mapsto (-1)^{f_a(x)}|x\rangle = (-1)^{x \cdot a}|x\rangle$$

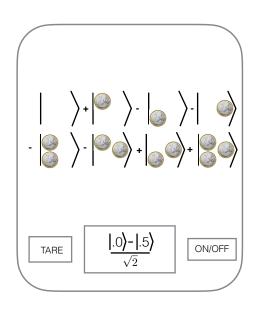


$$H_n | 0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

weigh. 
$$U_{f_a}:|x\rangle\mapsto (-1)^{x\bullet a}|x\rangle$$
 Hadamard  $H_n:|y\rangle\mapsto \frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{x\bullet y}|x\rangle$ 

$$H_n | 0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

$$H_n \circ H_n = I$$



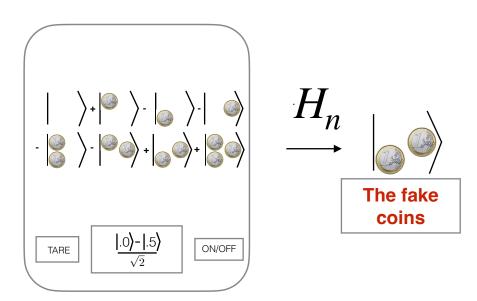
weighing

$$H_n | 0...0 \rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \quad \mapsto \quad \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot a} |x\rangle$$

weigh. 
$$U_{f_a}: |x\rangle \mapsto (-1)^{x \bullet a} |x\rangle$$
 Hadamard  $H_n: |y\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \bullet y} |x\rangle$ 

$$H_n | 0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

$$H_n \circ H_n = I$$



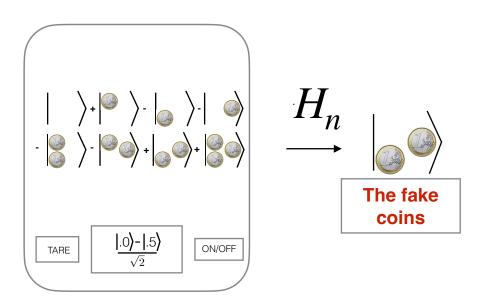
weighing

$$H_n | 0...0 \rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \quad \mapsto \quad \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot a} |x\rangle$$

weigh. 
$$U_{f_a}: |x\rangle \mapsto (-1)^{x \cdot a} |x\rangle$$
 Hadamard  $H_n: |y\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |x\rangle$ 

$$H_n | 0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

$$H_n \circ H_n = I$$



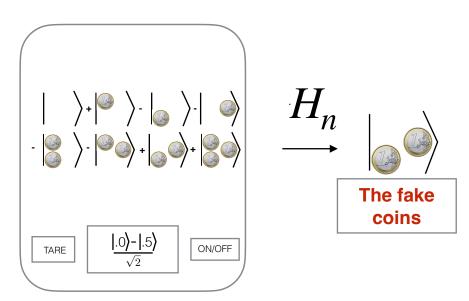
weighing

$$H_n|0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \quad \mapsto \quad \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot a} |x\rangle = H_n|a\rangle$$

weigh. 
$$U_{f_a}: |x\rangle \mapsto (-1)^{x \cdot a} |x\rangle$$
 Hadamard  $H_n: |y\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |x\rangle$ 

$$H_n | 0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

$$H_n \circ H_n = I$$

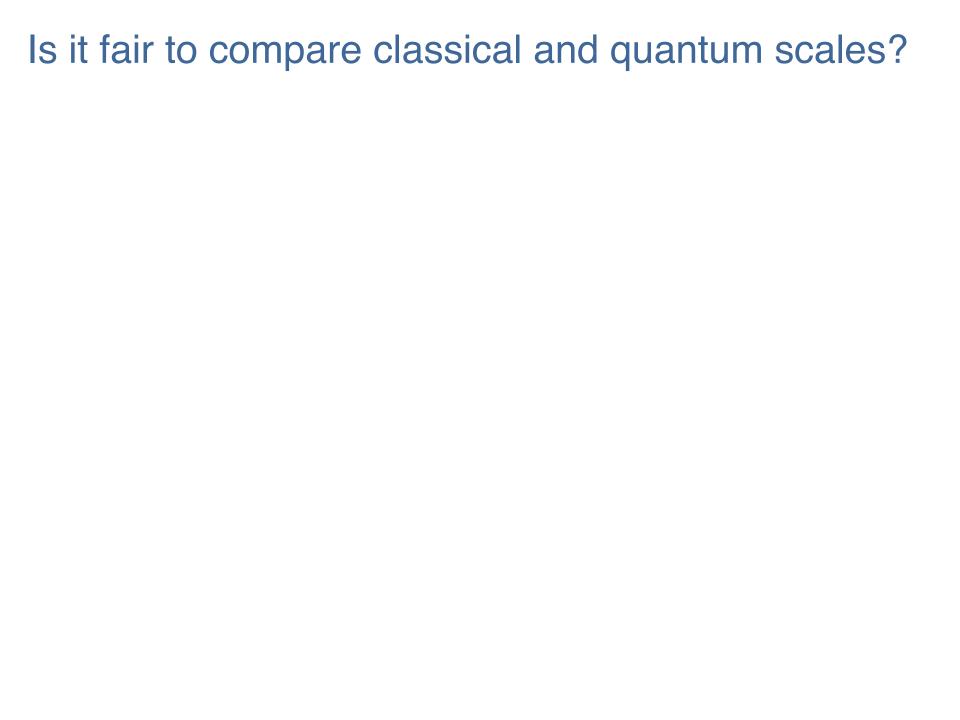


$$Weighing \\ H_n |0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \quad \mapsto \quad \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \bullet a} |x\rangle = H_n |a\rangle \quad \mapsto \quad = H_n H_n |a\rangle = |a\rangle$$

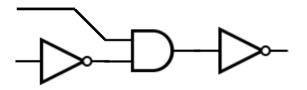
weigh. 
$$U_{f_a}: |x\rangle \mapsto (-1)^{x \bullet a} |x\rangle$$
 Hadamard  $H_n: |y\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \bullet y} |x\rangle$ 

$$H_n | 0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

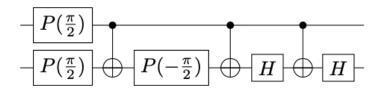
$$H_n \circ H_n = I$$



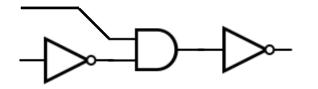
Classical circuit



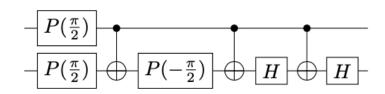
Quantum circuit



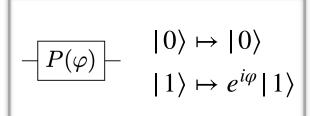
#### Classical circuit

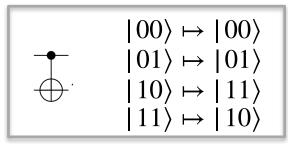


#### Quantum circuit

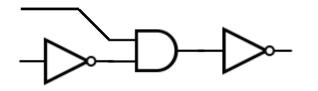


$$-H - \frac{|0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}}{|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}}$$

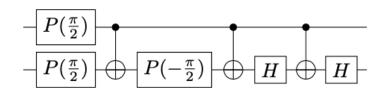




Classical circuit

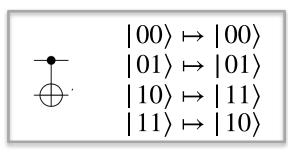






$$-H - \frac{|0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}}{|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}}$$

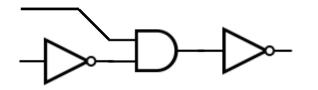
$$-P(\varphi) - \begin{array}{c} |0\rangle \mapsto |0\rangle \\ |1\rangle \mapsto e^{i\varphi} |1\rangle \end{array}$$



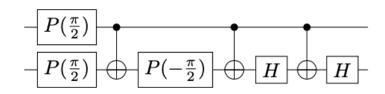
**Universality:** Any unitary transformation acting on a finite number of qubits can be represented by a quantum circuit which gates are:

$$-P(\varphi)$$
  $-H$ 



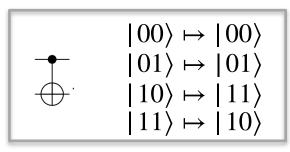






$$-H - \frac{|0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}}{|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}}$$

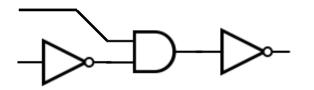
$$-P(\varphi) - \begin{vmatrix} |0\rangle \mapsto |0\rangle \\ |1\rangle \mapsto e^{i\varphi} |1\rangle \end{vmatrix}$$



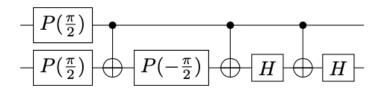
**Universality:** Any unitary transformation acting on a finite number of qubits can be *approximated* with arbitrary precision by a quantum circuit which gates are:

$$-P\left(\frac{\pi}{4}\right)$$
 —  $H$  — T gate

Classical circuit



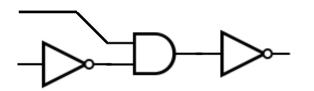
Quantum circuit



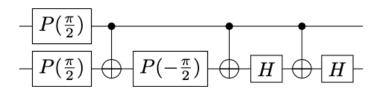
Quantum extensions of a boolean function  $f: \{0,1\}^n \to \{0,1\}$ :

$$|x\rangle - U_f - (-1)^{f(x)} |x\rangle$$

Classical circuit



Quantum circuit



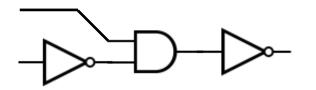
Quantum extensions of a boolean function  $f: \{0,1\}^n \to \{0,1\}$ :

$$|x\rangle - U_f - (-1)^{f(x)}|x\rangle$$

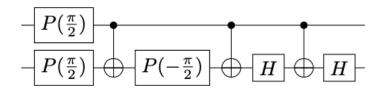
**THM:** if a boolean function  $f:\{0,1\}^n \to \{0,1\}$  can be implemented by a boolean circuit of size s then  $U_f$  can be implemented by a quantum circuit of size O(s).

YES!









Quantum extensions of a boolean function  $f: \{0,1\}^n \to \{0,1\}$ :

$$|x\rangle - U_f - (-1)^{f(x)}|x\rangle$$

**THM:** if a boolean function  $f:\{0,1\}^n \to \{0,1\}$  can be implemented by a boolean circuit of size s then  $U_f$  can be implemented by a quantum circuit of size O(s).

#### Outline

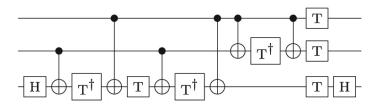
Challenges in Quantum computing

Postulates

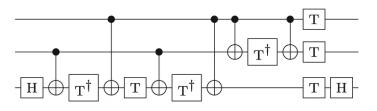
1st Quantum Algorithm

**Reasoning on Quantum Circuits** 

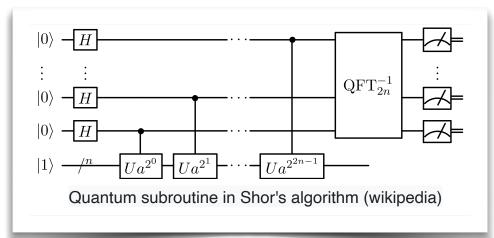
Grover

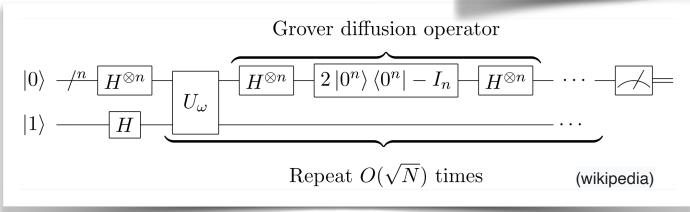


**Quantum Circuits** 



**Quantum Circuits** 





D. Deutsch. Quantum computational networks. Proceedings of the Royal Society of London, A425:73-90, 1989. 55

Quipper, Qiskit, ...

```
mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit)
mycirc a b = do
   a <- hadamard a
   b <- hadamard b
   (a,b) <- controlled_not a b
   return (a,b)</pre>
```



cf Benoit's talks

Quipper, Qiskit, ...

```
mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit)
mycirc a b = do
    a <- hadamard a
    b <- hadamard b
    (a,b) <- controlled_not a b
return (a,b)</pre>
```

Quipper, Qiskit, ...

Langages for circuit description.

```
mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit)
mycirc a b = do
    a <- hadamard a
    b <- hadamard b
    (a,b) <- controlled_not a b
return (a,b)</pre>
```

Quipper, Qiskit, ...

Langages for circuit description.

```
mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit)
mycirc a b = do
  a <- hadamard a
  b <- hadamard b
  (a,b) <- controlled_not a b</pre>
  return (a,b)
mycirc2 :: Qubit -> Qubit -> Qubit
  -> Circ (Qubit, Qubit, Qubit)
mycirc2 a b c = do
  mycirc a b
  with_controls c $ do
   mycirc a b
   mycirc b a
  mycirc a c
  return (a,b,c)
```

Quipper, Qiskit, ...

Langages for circuit description.

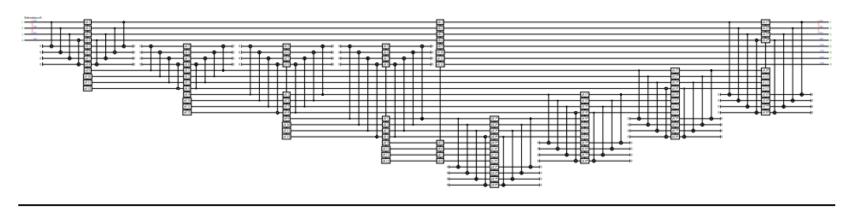


Figure 2. The circuit for o4\_P0W17

```
mycirc a b
mycirc a b
mycirc b a
mycirc a c
return (a,b,c)
```

Quipper, Qiskit, ...

Langages for circuit description.

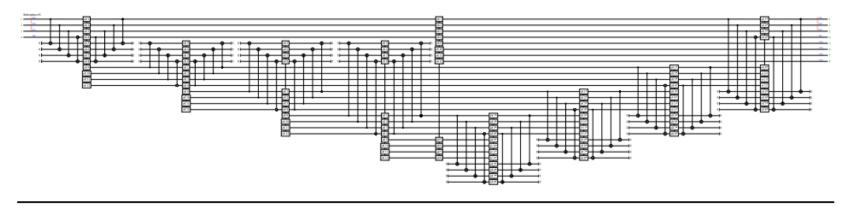


Figure 2. The circuit for o4\_P0W17

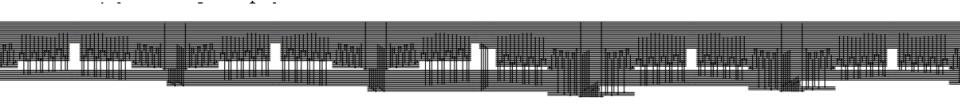
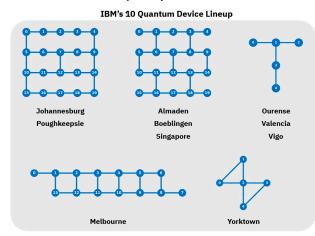


Figure 3. The circuit for o8\_MUL

#### Ubiquitous intermediate language for:

- Resource optimisation (#gates, #T, #CNot...)
- Hardware-constraint satisfaction (primitives, topological constraints, ...)
- Fault-tolerant Quantum Computing
- Verification, circuit equivalence testing.

=> Circuit Transformation

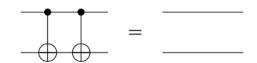


#### Ubiquitous intermediate language for:

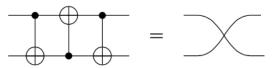
- Resource optimisation (#gates, #T, #CNot...)
- Hardware-constraint satisfaction (primitives, topological constraints, ...)
- Fault-tolerant Quantum Computing
- Verification, circuit equivalence testing.

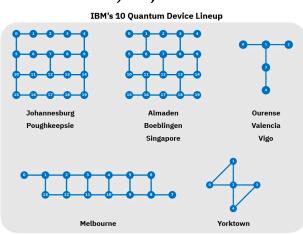
#### => Circuit Transformation

#### Equational theory, e.g.:



$$= \begin{array}{c} X & X \\ \hline X & \end{array}$$



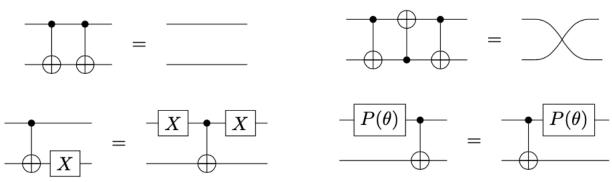


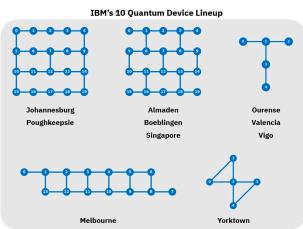
### Ubiquitous intermediate language for:

- Resource optimisation (#gates, #T, #CNot...)
- Hardware-constraint satisfaction (primitives, topological constraints, ...)
- Fault-tolerant Quantum Computing
- Verification, circuit equivalence testing.

#### => Circuit Transformation

#### Equational theory, e.g.:



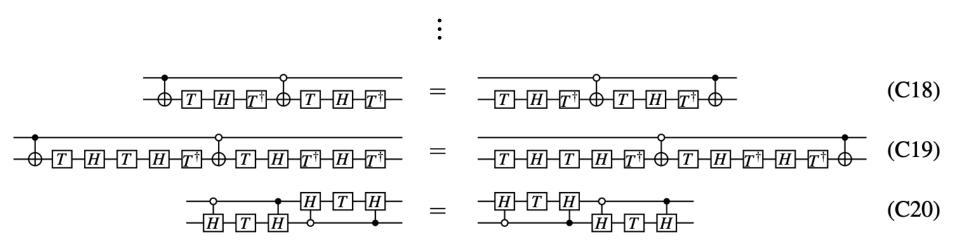


### Is this equational theory complete<sup>1</sup>?

if two circuits represent the same unitary, one can be transformed into the other using the equational theory,
 i.e, all true equations can be derived.

Complete equational theories for non-universal and classically simulatable fragments:

• 2-qubit circuits (Clifford+T) [Bian, Selinger'14]



Complete equational theories for non-universal and classically simulatable fragments:

- 2-qubit circuits (Clifford+T) [Bian, Selinger'14]
- Stabilizer [Ranchin, Coecke'18], CNot-dihedral (CNot+X+T) [Amy, Chen, Ross'21].

Complete equational theories for non-universal and classically simulatable fragments:

- 2-qubit circuits (Clifford+T) [Bian, Selinger'14]
- Stabilizer [Ranchin, Coecke'18], CNot-dihedral (CNot+X+T) [Amy, Chen, Ross'21].

**Theorem [1,2,3].** First complete equational theory for quantum circuits.

•••

- 1. Clément, Heurtel, Mansfield, Perdrix, Valiron. LICS'23
- 2. Clément, Delorme, Perdrix, Vilmart. CSL'24
- 3. Clément, Delorme, Perdrix, LICS'24

Complete equational theories for non-universal and classically simulatable fragments:

- 2-qubit circuits (Clifford+T) [Bian, Selinger'14]
- Stabilizer [Ranchin, Coecke'18], CNot-dihedral (CNot+X+T) [Amy, Chen, Ross'21].

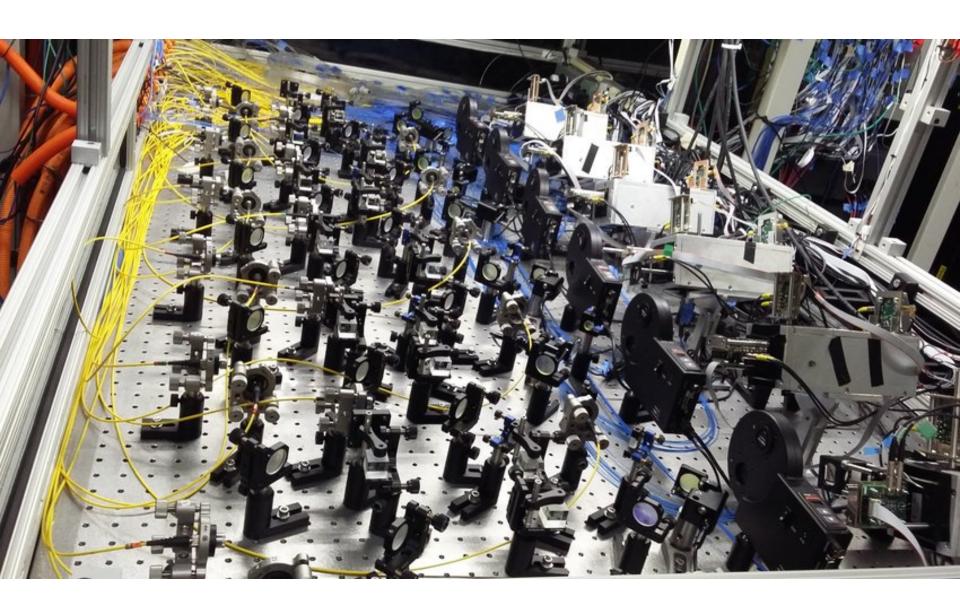
Theorem [1,2,3]. First complete equational theory for quantum circuits.

$$\frac{P(\varphi)}{P(\varphi)} = \frac{P(\varphi)}{P(\varphi)} = \frac{P(\varphi)}{P(\varphi$$

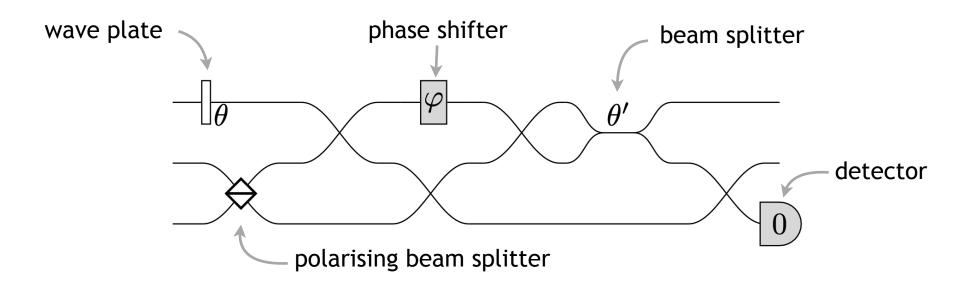
**Proposition.** This complete equational theory is minimal.

••

- 1. Clément, Heurtel, Mansfield, Perdrix, Valiron. LICS'23
- 2. Clément, Delorme, Perdrix, Vilmart. CSL'24
- 3. Clément, Delorme, Perdrix, LICS'24



### The LO<sub>V</sub>-calculus



-> For this talk restriction to beam splitters and phase shifters:



1. A. Clément, N. Heurtel, S. Mansfield, S. Perdrix, B. Valiron. LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits. MFCS'22.

**Theorem (Completeness)** [Clément, Heurtel, Mansfield, Perdrix, Valiron MFCS'22]

The following equational theory is complete, i.e. if  $[\![C_1]\!] = [\![C_2]\!]$  then  $LO_v \vdash C_1 = C_2$ 

Theorem (Completeness) [Clément, Heurtel, Mansfield, Perdrix, Valiron MFCS'22]

The following equational theory is complete, i.e. if  $[\![C_1]\!] = [\![C_2]\!]$  then  $LO_v \vdash C_1 = C_2$ 

- Complete for Optical circuits
- Implemented in Perceval





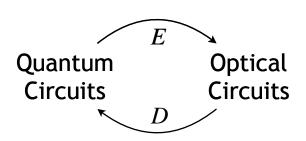
## Completeness for Quantum Circuits



Parallel composition means:

- tensor product for Quantum Circuits
- direct sum for Optical Circuits

### Completeness for Quantum Circuits





Parallel composition means:

- tensor product for Quantum Circuits
- direct sum for Optical Circuits

$$\frac{-H-H-}{H-} = - (H^2) \qquad -P(0)- = - (P_0)$$

$$\frac{-P(\varphi)-}{-H-} = -P(\frac{\pi}{2})-R_X(\frac{\pi}{2})-P(\frac{\pi}{2})- (E_H)$$

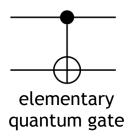
$$\frac{-H-}{-R_X(\alpha_1)-P(\alpha_2)-R_X(\alpha_3)-} = -P(\beta_1)-R_X(\beta_2)-P(\beta_3)- (Euler)$$

$$\frac{-P(0)-}{-P(0)-} = - (P_0)$$

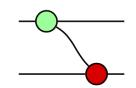
$$\frac{-P(0)-}{-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P(\frac{\pi}{2})-P$$

- 1. Clément, Heurtel, Mansfield, Perdrix, Valiron. LICS'23
- 2. Clément, Delorme, Perdrix, Vilmart. CSL'24
- 3. Clément, Delorme, Perdrix, LICS'24

#### CNot in circuit



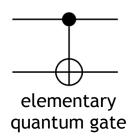
CNot in ZX



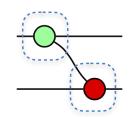


cf Miriam's talk

#### CNot in circuit



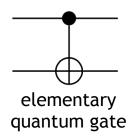
#### CNot in ZX



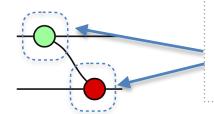


cf Miriam's talk

#### CNot in circuit





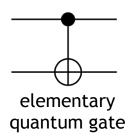


Mathematically well-defined but not necessarily (deterministically) implementable

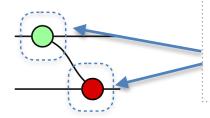


cf Miriam's talk

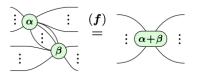
#### CNot in circuit

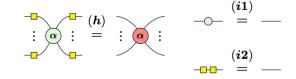


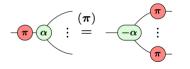
#### CNot in ZX

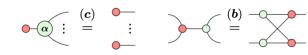


Mathematically well-defined but not necessarily (deterministically) implementable





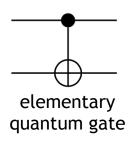




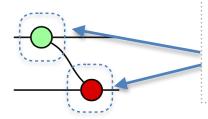


cf Miriam's talk

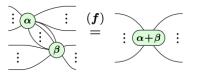
#### CNot in circuit

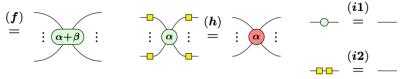


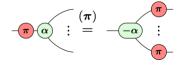
#### CNot in ZX

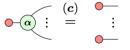


Mathematically well-defined but not necessarily (deterministically) implementable













cf Miriam's talk

#### Completeness results

- Clifford (classical simulatable) [Backens'14]
- Clifford+T (approx. Universal) [Jeandel, Perdrix, Vilmart'17]
- Universal [Ng, Wang'17]
- Universal, nearly minimal [Vilmart'19]

